Breaking News

New BLOS capability on the horizon for B-52s, first IRIS air demo complete > Air Force > Article Display Man dies following rescue attempts after being pulled from American Canal in El Paso, Texas CBP to nominate Ian Saunders for Secretary General of the World Customs Organization Governor Walz Takes Executive Action to Protect Reproductive Health Care in Minnesota Gov. Wolf Applauds President’s Signing of Gun Violence Package GSK presents promising new data for bepirovirsen, an investigational treatment for chronic hepatitis B Air Force selects future aircrew helmet > Air Force > Article Display Administrator Samantha Power’s Participation at Pride@USAID: Accelerating LGBTQI+ Inclusive Development Event | Readout

Researchers at Columbia University, supported in part by a grant from the U.S. National Science Foundation, conducted a study that modeled the seasonal variability of solar and wind power. The team examined decades of data to measure variability trends over time and the impact on power grids. As the shift to renewable energy gains momentum, variable supply is an important consideration.

“Designers of renewable energy systems will need to pay attention to changing wind and solar patterns over weeks, months and years, the way water managers do,” said Upmanu Lall, a co-author of the study. “You won’t be able to manage variability like this with batteries. You’ll need more capacity.”

Batteries would fall short as backup power sources for extended droughts. The batteries used to store surplus solar and wind power only hold a charge for a short period of time, and solar and wind power have no other renewable alternatives.

“These findings suggest that energy planners will have to consider alternate ways of storing or generating electricity, or dramatically increasing the capacity of their renewable systems,” Lall said.

The team studied solar and wind availability at airports to assess how much variation could occur with a completely renewable energy grid. The findings show that the seasonal potential of solar and wind power can vary by almost a third.

“In a fully renewable world, we would need to develop nuclear fuel or hydrogen fuel, or carbon recycling, or add much more capacity for generating renewables, if we want to avoid burning fossil fuels,” Lall continued.

“We won’t solve the problem by building a larger network. Electric grid operators have a target of 99.99% reliability, while water managers strive for 90% reliability. You can see what a challenging game this will be for the energy industry, and just how valuable seasonal and longer forecasts could be.”

Next the team plans to predict energy floods — when excess energy is produced — and droughts. Understanding how to forecast and manage the inevitable surplus and deficit of solar and wind power output will result in more reliable and sustainable power grids.

Source link